Logo Scolaplan

Biochimie

Biochimie

La biochimie est l'étude des réactions chimiques qui se déroulent au sein des êtres vivants, et notamment dans les cellules. La complexité des processus chimiques biologiques est contrôlée à travers la signalisation cellulaire et les transferts d'énergie au cours du métabolisme. Depuis un demi-siècle, la biochimie est parvenue à rendre compte d'un nombre considérable de processus biologiques, au point que pratiquement tous les domaines de la biologie, depuis la botanique jusqu'à la médecine, sont aujourd'hui engagés dans la recherche biochimique, voire biotechnologique. L'objectif principal de la biochimie de nos jours est de comprendre, en intégrant les données obtenues au niveau moléculaire, comment les biomolécules et leurs interactions génèrent les structures et les processus biologiques observés dans les cellules, ouvrant la voie à la compréhension des organismes dans leur ensemble. Dans ce cadre, la chimie supramoléculaire s'intéresse aux complexes moléculaires tels que les organites, qui constituent un niveau d'organisation de la matière vivante intermédiaire entre les molécules et les cellules.

La biochimie s'intéresse en particulier aux structures, aux fonctions et aux interactions des macromolécules biologiques telles que les glucides, les lipides, les protéines et les acides nucléiques, qui constituent les structures cellulaires et réalisent de nombreuses fonctions biologiques. La chimie cellulaire dépend également de molécules plus petites et d'ions. Ces derniers peuvent être inorganiques, par exemple l'ion hydronium H3O, l'hydroxyle OH ou des cations métalliques, ou bien organiques, comme les acides aminés qui constituent les protéines. Ces espèces chimiques sont essentiellement constituées d'hydrogène, de carbone, d'oxygène et d'azote ; les lipides et les acides nucléiques contiennent en plus du phosphore, tandis que les protéines contiennent du soufre et que les ions et certains cofacteurs sont constitués ou comprennent des oligoéléments tels que le fer, le cobalt, le cuivre, le zinc, le molybdène, l'iode, le brome et le sélénium.

Les résultats de la biochimie trouvent des applications dans de nombreux domaines tels que la médecine, la diététique ou encore l'agriculture ; en médecine, les biochimistes étudient les causes des maladies et les traitements susceptibles de les soigner ; les nutritionnistes utilisent les résultats de la biochimie pour concevoir des régimes alimentaires sains tandis que la compréhension des mécanismes biochimiques permet de comprendre les effets des carences alimentaires ; appliquée à l'agronomie, la biochimie permet de concevoir des engrais adaptés aux différents types de cultures et de sols ainsi que d'optimiser le rendement des cultures, le stockage des récoltes et l'élimination des parasites.

On prête à Carl Neuberg l'introduction de ce terme en 1903 à partir de racines grecques, mais ce terme circulait déjà en Europe depuis la fin du xix siècle. Avec la biologie moléculaire et la biologie cellulaire, la biochimie est l'une des disciplines qui étudient le fonctionnement du vivant. Elle recouvre elle-même plusieurs branches, telles que la bioénergétique, qui étudie les transferts d'énergie chimique au sein des êtres vivants, l'enzymologie, qui étudie les enzymes et les réactions qu'elles catalysent, ou encore la biologie structurale, qui s'intéresse aux relations entre les fonctions biochimiques des molécules et leur structure tridimensionnelle.

Éléments chimiques du vivant

Environ 25 éléments chimiques sur les 92 éléments naturels de la classification périodique sont nécessaires à différentes formes de vie. Les éléments présents à l'état de traces dans le milieu naturel ne sont généralement pas utilisés par les êtres vivants, à l'exception notable de l'iode et du sélénium, tandis que certains éléments abondants tels que l'aluminium ou le titane ne sont pas nécessaires à la vie. La plupart des organismes utilisent les mêmes éléments chimiques, mais il existe quelques différences chez les plantes et les animaux. Par exemple, certaines algues océaniques utilisent le brome tandis que les plantes terrestres et les animaux ne semblent pas en avoir besoin. Tous les animaux ont besoin de sodium, mais certaines plantes s'en dispensent. En revanche, les plantes ont besoin de bore et de silicium pour se développer, tandis que les animaux ne semblent pas en faire usage.

La masse du corps humain est constituée approximativement à 65 % d'oxygène et à 98,5 % de seulement six éléments chimiques : outre l'oxygène, ce sont environ 18 % de carbone, 10 % d'hydrogène, 3 % d'azote, 1,4 % de calcium et 1,1 % de phosphore. On compte également des quantités plus faibles de potassium, soufre, sodium, chlore, magnésium, fer, fluor, zinc, silicium et d'une douzaine d'autres éléments, qui ne sont pas tous nécessaires à la vie.

Biomolécules

Les quatre classes principales de molécules biochimiques, également appelées biomolécules, sont les glucides, les lipides, les protéines et les acides nucléiques. De nombreuses macromolécules biochimiques sont des polymères, constitués de l'assemblage d'unités plus petites appelées monomères ; ces monomères sont de petites molécules qu'il est possible de libérer du biopolymère par hydrolyse. Plusieurs de ces biomolécules sont susceptibles de former des complexes moléculaires de grande taille qui assurent souvent des fonctions biochimiques indispensables à la vie de la cellule.

Glucides

Les glucides sont constitués de monomères appelés oses. Le glucose, le fructose et le galactose sont des oses. Ces derniers sont classés en fonction du nombre de leurs atomes de carbone : trioses en C3, tétroses en C4, pentoses en C5, hexoses en C6, heptoses en C7.

D'un point de vue chimique, on distingue d'une part les aldoses, qui sont composés d'une chaîne d'alcools secondaires ayant à une extrémité un groupe aldéhyde, et d'autre part les cétoses, qui possèdent une fonction cétone dans leur chaîne carbonée, les autres atomes de carbone étant porteurs d'une fonction alcool primaire ou secondaire selon la position.

Les oses jouent un rôle majeur dans le métabolisme énergétique de la cellule, mais aussi dans la biosynthèse des acides nucléiques, des cérébrosides et des glycoprotéines. Ils peuvent également intervenir dans certains mécanismes de détoxication, par exemple à travers la glycuroconjugaison.

Deux oses peuvent s'unir à travers une liaison osidique pour former un diholoside : le saccharose est un diholoside constitué d'un résidu de glucose d'un résidu de fructose unis par une liaison osidique (1→2) ; le lactose en est un autre constitué d'un résidu de lactose et d'un résidu de glucose unis par une liaison osidique β(1→4). Au-delà de deux résidus, on parle d'oligosaccharides jusqu'à dix résidus et de polysaccharides au-delà : sont des biopolymères constitués plusieurs résidus osidiques d'oses qui interviennent dans le stockage de l'énergie (amidon, glycogène) et dans la rigidité de certains organismes (cellulose, chitine).

Chez les bactéries, les glucides constituent selon les cas l'essentiel du peptidoglycane ou du lipopolysaccharide de la paroi bactérienne. Ils sont responsables des réactions immunitaires de l'organisme exposé à ces bactéries. Ce sont également des déterminants antigéniques, ou épitopes, importants à la surface des cellules d'eucaryotes. Ils déterminent les groupes sanguins et sont une part importante du complexe majeur d'histocompatibilité, ou CMH.

Quelques exemples de glucides :

  • le glycéraldéhyde est l'ose le plus simple dans la classe des aldoses, c'est un aldotriose (C3). De même pour la dihydroxyacétone dans la classe des cétoses (cétotriose). Le ribose est un aldopentose (C5) qui entre dans la composition des acides nucléiques ;
  • le glucose (« gluco », du grec glukus, saveur sucrée) est un aldohexose de formule C6H12O6. On le trouve dans les fruits mûrs, le nectar des fleurs, la sève, le sang et certains sirops ;
  • le fructose (du latin fructus, fruit) appelé aussi lévulose, est un cétohexose. On le rencontre dans les fruits, le miel, dans certaines boissons sucrées et dans les sécrétions séminales ;
  • le saccharose (du grec sakkharon, sucre) de formule C12H22O11 est un disaccharide qui donne par hydrolyse du glucose et du fructose. On le trouve dans la plupart des végétaux et en particulier dans la betterave sucrière, la canne à sucre ;
  • le maltose est un disaccharide qui donne par hydrolyse deux molécules de glucose ;
  • le lactose est un disaccharide qui donne par hydrolyse un glucose et un β-galactose. On trouve le lactose notamment dans le lait et les produits laitiers.

Lipides

Les lipides, du grec « lipos » (« graisse »), constituent une classe assez hétérogène de molécules. Sont regroupées sous cette dénomination les molécules ayant un caractère hydrophobe marqué, c'est-à-dire très peu solubles dans l'eau mais solubles dans la plupart des solvants organiques, comme le chloroforme, par exemple. Nous trouvons aussi des lipides dans la cire de bougie, les graisses animales, l'huile d'olive et pratiquement tous les corps gras. La biochimie a complété cette définition en montrant que les lipides possédaient des voies de synthèse communes. Cependant, il n'existe pas encore de définition unique d'un lipide reconnue par l'ensemble de la communauté scientifique. Ceci tient probablement au fait que les lipides forment un ensemble de molécules aux structures et aux fonctions extrêmement variées dans le monde du vivant.

D'un point de vue métabolique, les lipides constituent des réserves énergétiques. Les sucres sont par exemple transformés en lipides et stockés dans les cellules adipeuses en cas de consommation supérieure à l'utilisation.

Les lipides, en particulier les phospholipides, constituent l'élément majeur des membranes cellulaires. Ils définissent une séparation entre le milieu intracellulaire et le milieu extracellulaire. Leur caractère hydrophobe rend impossible le passage de molécules polaires ou chargées, comme l'eau et les ions, car ils forment des groupes très compacts issus de liaisons covalentes faibles appelées interaction hydrophobe. Seules voies de passage possible : les protéines membranaires où, par exemple, les ions entrent et sortent de la cellule par le biais de canaux ioniques.

Plusieurs hormones sont des lipides, en général dérivées du cholestérol (progestérone, testostérone, etc.), ce qui permet d'agir comme filtre aux entrées des cellules. Les vitamines liposolubles peuvent aussi être classées parmi les lipides.

Contrairement aux acides nucléiques ou aux protéines, les lipides ne sont pas des macromolécules constituées d'une succession d'unités de base.

Structure et classification

Les lipides peuvent être classés selon la structure de leur squelette carboné (atomes de carbone chaînés, cycliques, présence d'insaturations, etc.) :

  • les acides gras : il s'agit d'acides carboxyliques à longue chaîne carbonée pouvant être saturée, insaturée, ramifiée, etc. Des exemples bien connus sont les oméga-3 et -6, mais aussi les prostaglandines.

Les phospholipides : lipides qui constituent la membrane cellulaire permettant le passage de certains minéraux ;

  • les glycérides et phosphoglycérides : ces lipides sont formés par estérification d'un glycérol et d'un à trois acides gras (ou mono-, di- et triglycérides). Dans le cas des phosphoglycérides, l'estérification se fait avec glycérol, un ou deux acides gras et un phosphate. Le groupe phosphate peut à son tour subir une estérification par différents composés hydroxylés comme la choline ou la sérine, donnant respectivement de la phosphatidylcholine et de la phosphatidylsérine. Il est à noter que glycérides et phosphoglycérides sont appelés de façon plus exacte acylglycérols et glycérophospholipides respectivement ;
  • les sphingolipides : ces lipides résultent de l'estérification puis de l'amidification de la sérine par deux acides gras. Une sous-classe bien connue de sphingolipides est celle des céramides ;
  • les stérols : les stérols sont des lipides possédant une chaîne carbonée plusieurs fois cyclisée. Ils ne sont donc pas linéaires comme les acides gras. Des exemples bien connus de stérols sont le cholestérol, la vitamine D et les hormones stéroïdiennes (testostérone, œstrogènes, cortisone) ;
  • les prénols : il s'agit de lipides dérivant de l'isoprène, par exemple les vitamines E et K ou le β-carotène ;
  • les polykétides : ils forment une gamme très vaste de composés naturels dont sont dérivés de nombreux antibiotiques comme les macrolides ;
  • les saccharolipides : ils résultent de l'estérification et/ou de l'amidification de sucres et d'acides gras. L'exemple le plus connu de saccharolipide est sans doute le lipopolysaccharide.

Pour des raisons pratiques et historiques, acylglycérols et phosphoglycérides sont souvent considérés comme deux catégories différentes, de même que phosphoglycérides et phosphosphingolipides peuvent être regroupés sous l'appellation de phospholipides.

Protéines (protides)

Les protéines (du grec prôtos, premier) sont des polymères composés d'une combinaison de quelque 20 acides aminés. La plupart des protéines sont formées de l'union de plus de 100 acides aminés (résidus) reliés entre eux par des liaisons peptidiques. Pour un nombre moins important de résidus on parle de peptides (< 50 résidus) et de polypeptides (≥ 50 résidus).

Acides aminés

L'atome de carbone central Cα (carbone alpha) est relié à un groupe amine (NH2-), à un groupe carboxyle acide (-COOH) et à une chaîne latérale R variable d'un acide aminé à un autre. Les chaînes latérales (R) peuvent avoir des propriétés différentes, certaines sont hydrophiles, d'autres hydrophobes. Certaines, en solution aqueuse, s'ionisent positivement (basiques) et d'autres négativement (acides) ou restent neutres. Les mammifères possèdent les enzymes nécessaires pour la synthèse de l'alanine, l'asparagine, l'aspartate, la cystéine, le glutamate, la glutamine, la glycine, la proline, la sérine, et la tyrosine. Quant à l'arginine et l'histidine, ils sont produits mais en quantité insuffisante surtout pour les jeunes individus. En revanche, l'isoleucine, la leucine, la lysine, la méthionine, la phénylalanine, la thréonine, le tryptophane, et la valine ne peuvent pas être produits par notre organisme. Pour éviter tout carence, ils doivent être apportés régulièrement par l'alimentation dans les bonnes proportions : ce sont les acides aminés essentiels.

Fonctions

Les protéines assurent plusieurs fonctions au sein des cellules et de l'organisme, qui sont à l'essence même de la vie. En voici une liste non exhaustive avec quelques exemples :

  • structure et soutien : tubuline, élastine, collagène, kératine ;
  • catalyse des réactions biologiques : enzymes ;
  • transport et stockage : hémoglobine, ferritine ;
  • signalisation et régulation : hormones peptidiques, cytokines ;
  • réception et transduction des signaux : récepteurs biologiques ;
  • mouvement et motricité : système actine / myosine ;
  • identité et défense contre les agressions biologiques : anticorps ;
  • protection contre le stress environnemental : les chaperons ;
  • détoxification : cytochrome P450, peroxydases, superoxyde dismutase.

Protéome

Pour un total d’environ 20 000 à 25 000 gènes (génome), on estime à un million le nombre de protéines différentes qui peuvent être produites dans les cellules humaines (protéome). Le nombre de protéines produites par le cerveau humain, dont le rôle est essentiel pour son fonctionnement, est estimé à environ 12 000.

Acides nucléiques

Les acides nucléiques ont été isolés initialement des noyaux des cellules eucaryotes (du latin nucleus, noyau). Ce sont des macromolécules comportant des sous-unités appelées nucléotides. On peut en distinguer deux grands types : les acides désoxyribonucléiques (ADN) et les acides ribonucléiques (ARN). L'ADN est le support universel de l'information génétique (sauf pour certains virus). Grâce à deux fonctions catalytiques, cette molécule assure la transmission et l'expression de l'information qu'elle contient :

  • la fonction autocatalytique : permet l'autoduplication de l'ADN et assure la transmission de l'information d'une génération à une autre ;
  • la fonction hétérocatalytique : gouverne la synthèse protéique. Étant donné que les enzymes sont des protéines et que toutes les synthèses et réactions dépendent d'elles, l'ADN contrôle toute l'organisation et les processus biologiques des cellules et des organismes. Ainsi, l'ADN exprime l'information qu'il comprend.

Information génétique

Classiquement, on considère que le gène est une région d'un brin d'ADN dont la séquence code l'information nécessaire à la synthèse d'une protéine. Trois types d'ADN différents constituent le génome (l'ensemble des gènes d'un individu ou d'une espèce) :

  • l'ADN « domestique » : représentant environ 75 % du génome, est formé de gènes présents en un seul exemplaire ou en un nombre limité de copies. Toutefois, par extension, ce type d'ADN englobe également certains gènes spécifiques dits à multicopies, comme ceux des ARN ribosomiques ou bien ceux codant les histones. Ces derniers existent sous forme de larges amas de copies (50-10 000 copies) localisés sur un ou plusieurs chromosomes ;
  • l'ADN « répétitif et dispersé » (minisatellites et microsatellites) : constitue 15 % du génome et est caractérisé par de courtes séquences nucléotidiques (supérieures à 100 pour les minis), répétées en tandem un très grand nombre de fois (10 - 10 fois), en de nombreuses régions du génome ;
  • l'ADN « satellite » : (environ 10 % du génome) est constitué de séquences hautement répétitives, essentiellement localisées dans les régions des centromères et des télomères.

Le génome humain comprend environ 3 milliards de paires de bases représentant près de 30 000 gènes (en fait, dans les estimations récentes, c'est entre 20 000 et 25 000 gènes). Toutefois, il ne semble pas y avoir de relation systématique entre le nombre de paires de bases par génome et le degré de complexité d'un organisme. Ainsi, certaines plantes et organismes amphibiens possèdent un génome comptant plus de 100 milliards de paires de nucléotides, soit 30 fois plus qu'un génome humain. En effet, le génome des cellules eucaryotes semble contenir un large excès d'ADN. Chez les mammifères, moins de 10 % du génome serait utile à l'expression en protéines ou à la régulation de cette expression.

La taille des gènes peut varier de quelques centaines à plusieurs dizaines de milliers de nucléotides. Cependant même les gènes les plus longs n'utilisent qu'une faible portion de leur séquence pour coder l'information nécessaire à l'expression en protéines. Ces régions codantes sont appelées exons et les séquences non codantes introns. D'une manière générale, plus l'organisme est complexe, plus la quantité et la taille des introns est importante. Ainsi la présence d'introns sur l'ADN d'organismes procaryotes est extrêmement rare. Certaines régions de l'ADN sont impliquées dans la régulation de l'expression des gènes. Ces séquences de régulation sont généralement localisées en amont (du côté 5') ou en aval (côté 3') d'un gène et plus rarement à l'intérieur d'introns ou d'exons.

Vitamines

Les vitamines (du latin vita, vie) sont des composés organiques essentiels à la vie, agissant à faibles quantités, pour le développement, l'entretien et le fonctionnement de l'organisme. Nos cellules sont incapables de les synthétiser et elles doivent être apportées par l'alimentation sous peine d'avitaminose ; l'excès de vitamines est la survitaminose. La vitamine B1 (thiamine) est la première vitamine à avoir été découverte par le japonais Umetaro Suzuki cherchant à soigner le béribéri (une maladie due au déficit en vitamine B1, caractérisée par des atteintes musculaires et neurologiques). Elle fut isolée par Kazimierz Funk (biochimiste américain d'origine polonaise) en 1912. Aujourd'hui, on connaît 13 vitamines différentes pour l'homme. C'est un ensemble hétérogène du point de vue chimique et physiologique (mode d'action).

Les vitamines se divisent en deux grandes catégories : les vitamines hydrosolubles (groupes B et C) et les vitamines liposolubles (les groupes A, D, E, et K). Les vitamines hydrosolubles ne peuvent pas franchir la membrane cellulaire et elle doivent se fixer à un récepteur pour pénétrer la cellule. Elles sont facilement éliminées par les reins et la sueur, l'alimentation doit les fournir quotidiennement. Les vitamines liposolubles peuvent facilement traverser la membrane cellulaire. Leurs récepteurs se trouvent dans la cellule, soit dans le cytosol, soit dans le noyau. Elles sont stockées dans le tissu adipeux et le foie (d'où le risque de surdosage, surtout pour les vitamines A et D). Certaines vitamines sont des cofacteurs nécessaires à l'activité d'enzymes (vitamines du groupe B), d'autres constituent une réserve de pouvoir réducteur (vitamine C, E). Les fonctions des autres vitamines restent à élucider.

Sous-disciplines

  • Biochimie structurale
  • Biochimie métabolique
  • Biochimie génétique
  • Biochimie fonctionnelle
  • Biochimie médicale et clinique
Source : Wikipedia
En vedette
Vidéos
Flash info
Source : Actualités Google